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Nonlinear Stability of Unsteady Viscous Flow, Final Technical Report, A.P. Rothmayer

The stability and development of unsteady separation on airfoil leading edges has been investi-
gated. In particular, attention was focused on investigations of 2D unsteady incompressible
flow past a parabola at angle of attack which models the leading edge of many airfoils. This
study has direct application to leading edge stall (LES) and thin airfoil stall as well as unsteady
flow past leading edges. The general character of much of this study allows for application to
other classes of unsteady boundary layer flow. The accomplishments are detailed below.

1.0 Investigations of Boundary Laver Approaches:

A number of issues were examined related to unsteady leading edge separation sdlved using
the classical boundary layer approximation at high Reynolds numbers (see Fig. 1), the equa-
tions being: -

Ux -+ VY = 0
and

u, + uux + vuy = Ue, + UeUex + uyy,

where Ue is the inviscid slip velocity at the solid surface, which in general is a function of time
and position along the solid surface and is specified for the problem in question. The boundary

conditions are Accesion For j

NTIS CRA&I ﬂ]
u(x,0,t) = v(x,0,t) =0 DTIC  TAB 3
Unannounced 0

and Justification

: U(X, Y3 t) -> Ue(X, t) as Y -> O By

For the parabola at angle of attack the inviscid solution is Distribution|

y(x) + K(v) Availability Codes

Ue(x,t) = ———x—= -
/ 2 Avail and/|or
y(x)* + 1 Dist S'pecial’

and y(s) is given by

X = %[y‘/m-%- ln(y + \/}/T-F_l)} . A-"

The angle of attack parameter, K(t), measures the height of the stagnation point below the
horizontal axis, and may be related to the physical angle of attack in thin airfoil theory when
the parabola is the leading edge correction for flow past a thin airfoil. The K(t) is arbitrary.
For the case of uniform pitch—up, K(t) has been chosen as

_a 1, _cosh(bt + ¢)
KW =3 [‘ o sl |




where, a, b and c are constants and a is the ultimate slope of the K(t) curve (see Fig. 2).

a.) The existence of boundary layer instability modes for flow past a pitching parabola at angle
of attack was verified by local stability analysis (i.e. Orr—Sommerfeld analysis applied to the
boundary layer equations) (see Figs. 3 and 4). Modeshapes and growth rates were successfully
compared with the asymptotic theory of Cowley, Hocking & Tutty (1985), CHT, (see Figs. 4
and 5). The stability equations were developed from a linear perturbation about a known solu-
tion of the classical boundary layer equations, (ug, v). The perturbation takes the form

(u,v) ~ (ug,vg) + €u, vy + ..., €<1 ,
which gives the perturbation equations
u, +viy =0
and
up, T upuy, + Uy + Voljy + Villgy = Ujyy -

These equations are nonparallel and have a disturbance growth evolving on the time scale of
the original boundary layer. To examine high frequency instabilities, we made a partially paral-
lel flow approximation:

(u,vp = e, v)
which gives the equations:
ian +v'y =0
u's +iaugu'x +u'ug + vou'y + viugy, = u'yy .

The boundary conditions are:

u'(x,0,t) = v'(x,0,t) =0
and

u'(x, @,t) =0

This system was solved as a time marching problem with central differences in Y. The growth
rates and mode shapes were computed numerically from the long —time solutions. The above
equations are a non—asymptotic high frequency, short wavelength, version of the Cowley et
al (1985) work. The actual asymptotic structure of the high frequency instability is a bit more
complicated than this. Any high frequency instability which has streamwise wavelength a -1
will be inviscid at leading order, and neutral for the classical boundary layer. The CHT instabil-
ity is driven by viscous effects which re—enter through a viscous critical layer centered at the
minimum velocity point in an unsteady separation or maximum in a jet (see Fig. 3).

These instabilities should render the unsteady boundary layer equations ill—posed in time due




to the fact that the instabilities at zero wavelength have unbounded growth rates. However,
the instabilities do have low growth rates, and so a smooth enough boundary layer solution
which evolves more rapidly than the slow growth of the instabilities should be computable.

b.) Joint work with ET. Smith concluded that the above CHT instability could be connected
to marginal separation in a limit as initial separation was approached. That is, the unstable
modes with infinite growth rate at zero wavelength continued to exist until the point of first
separation (with the scaled growth rates tending to zero in a limit as the first separation point
was approached).

c.) In the early computations, grid—grid numerical oscillations were encountered whose mo-
deshapes (see Figs. 6 and 7), growth rates and overall qualitative/quantitative propetties coin-
cided quite well with those of the linear boundary layer instability computed above.

d.) The boundary layer oscillations were later removed in the full parabola at angle of attack
computations by an appropriate choice of numerical scheme, which was a Crank—Nicholson
method with the farfield conditions removed to true infinity (see Fig. 8). We believe that suffi-
cient smoothing of the scheme and boundary conditions removed the oscillations.

The current boundary layer equations were solved in streamfunction—velocity form with
stretching transformations in the streamwise and normal directions:

sinh(as -
_ n Sinh(bN) <N < < N < N

The boundary layer equations are given by
u— Nypg =0
and
up + Ssuug — SsNyWsug = Ue, + UeUes + Nynug + Nﬁ;um

These equations were solved with a second order backward temporal difference and central
differences on all other terms including the streamwise convective terms. The method is glob-
ally iterated to convergence at each time level with each alternate sweep being in opposite
directions to accelerate convergence.

e.) The discrepancy between the above two results, i.e. the fact that an Orr~Sommerfeld lin-
ear stability analysis of the smooth boundary layer solution clearly indicated that instability
modes should be present and would be dominated by the shortest wavelength modes, whereas
the numerical computations seemed to indicate that they could be removed, led us to examine
extensions into the nonlinear regime of the linear asymptotic CHT boundary layer instability

\
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theory.
The nonlinear critical layer is structured as follows.

The nonlinear structure corresponding to the linear work of Cowley et al (1985) is found, after
some trial and error, to occur when the disturbance within the critical layer (see Fig. 3) rise
to the level of the locally small parabolic contribution of the mean flow. In the critical layer,
it is nominally expected that:

—_ 2
u = Ug(y) + eU + .. = Uglye) + (7 = yUp (5) + wuow(yc) S

For simplicity the following variables were defined: '
Uoe = Uglrd  Une=Upd  Use=Up () - :
The critical layer is placed at a velocity minimum or maximum and so it was assumed that
- Uge = Up 5) = 0

To preserve the connection with linear theory, the critical layer thickness was taken to be the
Cowley et al (1985) value:

y=y.+ a VY a>1

With these assumptions, the streamwise velocity expansion becomes

a—1/2y2

5 Uge + .. + €U + ...

u~Uyy) +eU+ ..~ Uy +
Therefore the perturbation within the critical layer becomes comparable to the dominant par-
abolic portion of the mean flowwhich drives the linear boundary layer instability when the per-
turbation rises to the still small value ¢ = o ~ /2. This may be shown to generate a vertical ve-
locity of O(al/# ) within the critical layer which provides the displacement driving the main
linearized boundary layer flow. Pressure displacement interaction is negligible provided the
wavelengths of the disturbances are sufficiently long.

In the main boundary layer flow y is O(1) and the streamwise length scale is taken to be a small
specified value (see Region I of Fig. 3):

9 _ o0

ax 95X -
Consistency within the critical layer requires that the disturbance be approximately convected
with the flow velocity (as is the case in the linear CHT mode) and so

._a._ = — aco_a_. -+ (11/2_6_

at oX oT -~
The first term is the local convection with the flow velocity, where ¢, is the wavespeed, which
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is the velocity at the reversed flow minimum

CO = UOC = Uo(yc) .

The second term is determined by bringing unsteady effects into play within the critical layer.
The outer flow is then forced by the displacement effect from the critical layer and is found
to have the expansions:

—

u~Uy®y) +a YV +a V2, + a3y + ...

and

v ~ o/, + allv, + alldvy +
Three orders of magnitude are required to reproduce the linear results presented in Cowley
et al (1985). In addition, the critical layer has algebraic decay in the matching with the main
boundary layer and the higher order termsare useful for numerically imposing that matching
boundary condition. Substitution into the unsteady boundary layer equations,

uc +vy =0
and
U, + Uty + Vuy = — p(X,t) + uy
gives the continuity equations
uix—{—vly =90 1=1,23

and the momentum equations

(Ugy) = cpux + Up()vy, = 0
(Up(y) = cluay + Uo(y)va, = — uyuyx — vyuy,

(Uo(y) — coluzy + UO(Y)V3y = U T Ulpx T Ulyx T Vil T Vol

These equations were integrated to give the expansions in the main boundary layer

w~ Ugly) + ™ AG, TIUR) + o~V BOCTIU) + $A056) |

; a—3/4[c<x, T)Ux(y) + ABUG(y) + %A3U6”<y>] +




vV~ - G3/4AX(U0(Y) —¢p) = al/z[BX(Uo(Y) —co) + AAXUb(Y)]

— AU = <o) + Ar + (AB)XUL) + EAYUE0)| + -

where A=A(X,T), B=B(X,T), and C=C(X,T) are unknown displacement functions. Notice
that the smallest term entering-into the momentum equation in the first three orders is
O(a'/* ) which is larger than any O(1) effect coming in from variations in the mean flow. Also
notice that the leading order v—velocity is set by matching with the critical layer, but the rest
of the terms are forced by nonlinear interactions in the momentum equation (i.e. the power
series expansion is set once the leading order v—velocity is known). .
The scales of the nonlinear critical layer are set by a viscous balance and by assuming that the
perturbations to the main boundary layer flow enters at the same order of magnitude as the
parabolic mean flow. It turns out that long scale variations from the main boundary layer flow
also enter this balance at the same order of magnitude. Therefore, two sets of scales are operat-
ing in the boundary layer, one on the scale of the local perturbation and the other onthe scale
of the main boundary layer:

O = o9 Lgl/29 . 0
3t CtCOaX ~ O aT-ratO .

The vertical scale of the critical layer is determined by a convective—viscous balance and is
found to be:

R V2O RO B
ay aY = dyy

The perturbations to the original boundary layer flow are on the local scales (X, Y,T), whereas
the original boundary layer flow is a known function of the longer scales (Xg, Yo, to ) i-€.
U, = Uy (Xg, Yo to) - The expansions in the critical layer are found to be:

2 _ -
u -~ UOC(XO: Yo t()) + a_l/z[%—Uo YO)'O(XO’ Yo tO) + U(X’ Y7T)] +a 3/4U2 +a 1U3 T
and

v~ a/f*VXY,T) + V, + a” V4V, +

The higher order terms drop from the equations, and are set from matching with the main
boundary layer. Substitution into the mass conservation equation gives:

Ux+Vy =0
The momentum equation yields the following equations for the first three terms in the expan-
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sion:

(Ug(p Yo tg) — €g)Uzx = 0

o 2

It is assumed that the critical layer lies at a local minimum or maximum in the velocity profile
and so

Ug, = Uy (g Yo tg) = 0

Furthermore; the disturbance is convected with the local flow velocity in the critical layer
which implies that

CO = UO(XO’ yC> to) .
At the critical layer, the original boundary layer satisfies the momentum equation
Therefore, the first two equations from the momentum equation are identically satisfied and
the third momentum equation becomes, essentially, a classical unsteady boundary layer prob-
lem:

Y2y . "N 4
UT+ TUOC-{-U UXTYUOCVTVUYZUYY

where

U(’)Ic = UOyoyo(XO’ Yo tO)
is a known constant. Matching the critical layer with the main boundary layer gives

1 2 1
U(X,Y,T) » YAUg, + %UOC as Y —»

and

VX, Y,T) = - [35—2 + AY + %—AZ}AXU{)'C ~A; asY—

Within the critical layer, the streamfunction is




Y~ o 4ULY + a—3/4[Y53U5C + tp] + ..

where

and the vorticity is

where i

From the above discussion, the nonlinear critical layer at the point of minimum velocity in the
reversed flow region was found to be governed by the following system of equations, obtained
after scaling out the various constants:

and

with the boundary conditions

U(X,Y,T)—»%3+YA+A72 as Y —
' X2 1a2|a, —
VXY, T) > — |5+ AY + A% [Ax — A as Y~
and
U(X,Y,T)—*—YT2 as Y > —
VX, Y, T)—=0 as Y —> — » .

Numerical computations of the early initiation phase of a boundary layer separation were de-
veloped and compared with existing computations. This was done for an inviscid vortex travel-
ing over a plate which induces an unsteady separation in the boundary layer on the plate (see
Fig. 9). These computations are representative of current state—of —the —art boundary layer
computational methods in the early pre —singularity unsteady separation stage. This numeri-
cal method is also the same method used to obtain smooth solutions on the parabola at angle
of attack and is the method used by Peridier et al (1991) and others to compute the early stages




of unsteady laminar boundary layer separation. Wall shears for the vortex convection problem
are shown in Fig. 10 and comparisons with Peridier et al (1991) are shown in Fig. 11. Numerical
computations were attempted for the nonlinear critical layer, described above, using this algo-
rithm (which was a trivial change in the algorithm from the above —mentioned test case). The
changes were due to the coupling algorithm for the farfield boundary conditions. The finite
difference equations are:

U Ut Vatl — yotl  yasl _ ya+l
1 i-1/2§ i-1/2j-1 + ij 1,}—1+ i~1j 1—1,]—1_0

2 2AY 2AY ’

X

£
Si-1/2

where the streamwise derivatives are central differenced about i—1/2. The momentum equa-
tion is central differenced about n+1/2,j after substitution of the mass equation for the stream-
wise convective term: -

1 -
Ui Y [Uﬂ“ + U“]{V?(H N Y%’z]

AT 2 2

yo+1 4 ya] U+ UY Ut + Uy
+[ 5 ] . = -1+

The resulting equation is Newton linearized and coupled to the mass equation using a block
tri—diagonal algorithm. The lower boundary conditions are

Y2
+1 _ 1
Ut = 5t
and

n+l1 _

The upper boundary conditions are the mass equation applied at j=N and the central differ-
enced form of the matching conditions. The v—matching condition is

n+1/2 Vv n+1/2 n+1l n
n+1/2 _, _ BN-1/2 Yix-iz2 _ Al Aj
iN-1/2 n+1/2 AT

/ Yno12 T A

This equation is Newton linearized and central differenced about the N—1/2 gridpoint, which
is taken at a large value of Y. The u—matching condition gives

Y2 (AP“S)
1 N 1 1 1 1
Up+ -> ——2— + YNA?+ + A?+ A:l+ .-

2
2

where g denotes guessed values from the Newton linearization which are iterated to conver-

gence at each time level. The boundary condition is implemented in the quasi—simultaneous

manner of Davis & Werle (1985). Following Davis & Werle (1985), the displacement function
computed from the first equation (i.e. Af‘“ ) is substituted into the second equation, giving

\
\
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a single boundary condition expressed only in terms of variables contained within the critical
layer equations. After the boundary layer equations are inverted at a particular i location the
displacement function is post—calculated from:

2

Y

A}'x+1 — 1 n+1 %‘1+<A?+1)

Y+ ARI| TN 2

The method is converged at each time level by repeatedly sweeping the grid in X from a fixed
upstream location to a fixed downstream location. The method is converged to a local absolute
error on the displacement function and all velocities at all points on the grid. Stretching is used
in the streamwise direction to isolate disturbances near the origin which are input gs initial
conditions which satisfy mass conservation.

The results were inconclusive. Exponential growth was observed at low to moderate ampli-
tude (see Figs. 12 through 15), but eventually point—point oscillations occurred with no clear
way to remove them. Large amplitude limits could be constructed, but without a numerical
solution to connect the linear instabilities to the large amplitude limit we did not feel that we
could justify the limit solution. Over—clustering the grid at earlier times showed that these
point—point oscillations could be moved forward in time. This was done using stretchings com-
parable to those used in the parabola at angle of attack problem and the vortex—over—a-
plate problem. Our feeling at this point is that there is a problem with the boundary layer equa-
tions, which can be made to go away if the numerical method and initial/boundary conditions
are sufficiently smooth (and the above critical layer is under—resolved), but can re—occur if
the grid spacing is made small enough.

The results of this part of the study were inconclusive due to the fact that we cannot obtain a
”grid—independent” verification of the CHT modes. To summarize

1. Non—asymptotic linear stability analysis of the boundary layer equations in regions of flow
separation clearly confirmed the existence of boundary layer instability modes. These com-
putations are smooth and regular.

2. Early numerical simulations which appeared smooth to graphical inspection yielded point -
point numerical oscillations which were in complete agreement with the CHT theory.

3. The instability encountered in #2 was found to be due to the numerical scheme and bound-
ary conditions. It is believed that the new scheme, which now conforms to current state—of—
the art boundary layer solution strategies for early separations, is smoother than our first
scheme. The boundary layer instability modes computed from linear stability analysis in #1
are still present.

4. We constructed the nonlinear critical layer to look for nonlinear amplitude modulation and/
or growth continuation. The critical layer was successfully constructed, but the numerical

10




method used in #3 yielded the same problem encountered in #2. It was found that the numeri-
cal oscillations were controlled by grid spacing (which was the same conclusion reached in #2).
This result is sensible. Our very tentative conclusion is that boundary layer schemes which re-
solve the critical layer will eventually run into numerical difficulty at sufficiently small grid
spacing. This suggestion still needs to be verified.

2.0 Stability Analysis:

Due to the potential difficulties encountered with the boundary layer equations we decided
to focus part of our attention on the pre—separation instabilities, and chose the Rayleigh insta-
bility as a first candidate for study. Our feeling at this point is that the Rayleigh instability is
one of a number of possible dominant flow solutions which may occur depending on the fre-
quency of the laminar flow and the particular flow conditions (The likely candidates right now
for 2D are: Tollmien—Schlichting waves, laminar boundary layer with singularity termination
tolocal Euler regions, unsteady marginal separation with singularity termination to local Euler
regions, CHT modes — which are likely just the marginal separations, and Rayleigh instabili-
ties). We believe that the Rayleigh instability will dominate the flow near a leading edge sepa-
ration in two dimensions providing that the unsteady forcing (say change in angle of attack)
is not too fast.

a.) We performed a stability analysis for the primary Rayleigh modes in the flow past a pitching
parabola at angle of attack, and verified that they do occur prior to boundary layer separation.
See Fig. 16 for the neutral stability curve. This was simply a solution of the Rayleigh equation
given a boundary layer input profile and is substantially the same as the other Rayleigh stability
analyses described later in this report.

It should be noted that the eigensolutions for this primary boundary layer instability do pro-
duce eigenvalues which would allow for the secondary instability cascading discussed below

(see Fig. 17).

b. It was recognized that a series of cascading secondary instabilities could be constructed at
low disturbance amplitude. The first step of a cascade could be constructed where the primary
inviscid instability creates a Stokes sublayer. This sublayer becomes unstable to secondary
Rayleigh instabilities at a low critical disturbance amplitude.

The classical Rayleigh instability has been shown by Smith & Bodonyi (1985) to occurina finite
aspect ratio region centered within a classical Prandtl boundary layer. Long—wave versions
of this instability for triple—decks have been considered by Tutty & Cowley (1986). The scales
for the dominant Smith & Bodonyi (1985) instability are (see Fig. 19, Region II):

(x,y,1) = (x0,0,t) + Re " V4(X, Y, T)

Within this region, the streamwise velocity and pressure are O(1) to match with the oncoming
boundary layer flow, and the normal velocity is finite to preserve mass conservation:

\
\

11




(u,v,p) ~ (U,V.P) + ...
The nonlinear instability is governed by Euler equations

U'I‘,i_ UUX + VUY = - PX
and

Vr+UVg+VVy= —-Py ,
with tangency conditions at the airfoil surface and the initial conditions being the sotational
boundary layer flow. In streamfunction—vorticity form these equations become
Q=Wyx+¥yy -
and

%%:Qt+wysax—wxgy=o

The linear version of this problem is the classical Rayleigh equation
io(Uo(Y) — )by = «?p] — iU " ()p =0 ,

where
Ug = ¥,y (Y) ,

and linear normal—mode perturbations have been assumed

(W,Q) ~ (F(Y), (V) + e[, EM)e“® D + cc|

In all cases, this equation was solved numerically using a nonlinear Newton iteration method,
by treating the complex eigenvalue, ¢, as an additional unknown, with

CY =0
Non—trivial eigensolutions are enforced by requiring that

PYy(0) =1

Quasi—linearizing and central differencing of the above equations in the forms indicated al-
low inversion of the resulting finite —difference system as a set of coupled block tri—diagonal
equations. This computation becomes difficult near neutral points due to the logarithmic sin-
gularity in the classical Tollmien expansions about the critical layer. The solutions exhibited
the standard properties of the linear Rayleigh instability. The growth rate is a local maximum
within the Euler region and is stable below some critical wavelength. The disturbance growth
rates also become small as the scaled wavelength becomes large, which connects up with the
long—wave Rayleigh instability (see Tutty & Cowley (1986) for example). For dynamic stall
on the parabola at angle of attack we expect all inflectional profiles to potentially admit Ray-
leigh instabilities (though this is not a sufficient condition for instability). The unsteady reverse

\
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flow profiles are inflectional. However, boundary layer velocity profiles prior to flow reversal
are also inflectional. Examination of the numerical boundary layer solutions shows that the
inflection point starts at the wall (as opposed to the flow interior). This at least opens up the
possibility that the Rayleigh instabilities could grow out of a Navier—Stokes region near the
wall. However, when the flow near the wall is inflectional, the wall shear is non—zero. This
means that the velocity profiles in any near wall region will be approximately pure shear pro-
files, which are stable. What we find instead is that the neutral solution occurs when the inflec-
tion point is at a finite scaled height within the boundary layer. The neutral solution is an invis-
cid neutral mode of the Smith & Bodonyi (1985) structure, i.e. the classical Rayleigh problem,
and we find that the neutral curve for the dynamic stall occurs somewhere between the curve
of first inflection point creation (which is at the wall) and first unsteady flow reversal.

The inviscid Rayleigh instability does not satisfy viscous no—slip conditions at the wall. There-
fore, a viscous sublayer is needed. For low instability amplitude this sublayer will be & Stokes
layer (Region ITI, Fig. 19). Can this Stokes layer be destabilized? The answer is yes. At the criti-
cal wave amplitude

u ~ Ug(Y) + efa(0)el®® =D + c.c]
with
g = Re™1/4 |
a Stokes layer is generated with

(x,y,8) = (0, 0.t + (Re ™ /2X,Re 7347, Re ~1/?T)

and
(u,v,p) ~ (Re 4T, Re " 1/2V,Re~1/%p) + ...,
with governing equations
Ug+Vg=0
and
Up = = PxX,T) + Ugy -

Given the driving disturbance which is the slip velocity of the linear Rayleigh instability at the
edge of the Stokes sublayer, the exact solution is

Uy = Uy @Y + 401 — e+ T)e*® =D + cc

where

k, = Joicl ei(Arg(c)/?, —n/4+(0x)

and the + indicates that the complex root with positive real part is chosen.The wave amplitude
of Re ~1/4 is the critical case, since it is the first amplitude at which a Navier—Stokes region
can be created within the Stokes layer. This brings nonlinear terms into play, which will allow

\
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secondary Rayleigh instabilities in the presence of sufficiently inflectional velocity profiles.
The Navier—Stokes region has the scales (see Region IV, Fig. 19):

(X,9,0) = (x, 0.t + Re~1/2X(,0,0) + (Re™¥/*X,Re ~¥/4Y,Re ~1/7T)

and

(u,v,p) ~ (0,0,Re=T/4P ) + (Re~V/*TU,Re "1/4V,Re 1/7P) + ..

The region is governed by the full Navier—Stokes equations:

Ux'i'vY:O 5 1

and

We solved a linear version of the above equations in streamfunction vorticity form, which gives
the linear stability, Orr—Sommerfeld, initial value problem:

2

§ =Ygy — Y

g1+ iaUy(Y, TE — iaUpgg(T. TV = — %8 + gy -

These equations cannot be solved using normal modes in time, due to the fact that the time
scale of the Stokes layer is the same as the Navier—Stokes region and T appears explicitly in
the base velocity. This linear problem was solved for a model Rayleigh instability of a form
similar to the one given above, but with arbitrarily prescribed growth rates and other constants.

The results are shown in Figs. 20 and 21, where the average streamwise velocity is
L,V

Ul = Llyf[%(zr);ﬁ , Ly> 1.

0

We identified two typical cases. The first was for standing wave instabilities (i.e. zero wa-
vespeed of the original Rayleigh instability) in which the solution in the Stokes layer is simply
dragged along with the Rayleigh instability (see Fig. 20). The second case was a traveling wave
instability with sufficiently large wavespeed (see Fig. 21). In this case the solution developed
local spikes which grew at a faster rate than the main Rayleigh instability. This strongly sug-
gests that secondary instabilities could occur within the Stokes layer, and could develop fast
time scales and large amplitudes.

b.) We developed a general theory of cascading linear Rayleigh instabilities emerging from the
above structure (see Figs. 18 and 22). We showed that a self—similar discrete scale cascade of
instabilities could occur which asymptotes from the boundary layer scale to the viscous dissipa-
tion scale in the following order (for linear instabilities):

\
\
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Sy n
Ayyy = Re ¥ {kﬂlenjf }Ai/zn :

If the disturbance amplitude at each step of the cascade is assumed to be O(1) and it is assumed
that the initial instability occurs in a classical boundary layer, then the cascade scales are:

—

(ApAyAyA,.) = (Re™1/2 Re™3/% Re /8 Re ~15/16, )

and they converge quickly to the dissipation scale Re ~1. Details of this cascade are given as
follows. ‘

It is assumed that the primary Rayleigh instability occurs in a region of dinfension
(A,8, = A;), where for the classical steady or unsteady Prandtl boundary layer (see Fig. 23)

- 61=A1=Re’1/2 .
Other base flows may be used, for the: natural convection boundary layer A; = Re ™14, tri-
ple—deck separation A; = Re ~%/8 Tollmein—Schlicting waves A, = Re ~%/8  for internal
flows separation of O(1) streamwise scale A; = Re =2/3 etc. The primary instability in this

first step of the cascade is governed by the nonlinear Euler equations, written here in stream-
function vorticity form

qujxx"!“qjyy N

D = o+ Uag + VRy =0

For all the Rayleigh stability calculations in this study, a linear stability analysis is performed
on this system of equations, in which case

(W, Q) ~ Wo(¥), Q(Y)) + &3]0, EM)e® =D + c.c.]
Substitution into the above equations gives
Yyy — @'Y =§

and

(W, (Y) — c — ia¥y " (Yyp =0 ,

which may be combined to give the classical Rayleigh equation

io(Ug(Y) = [y — o®] = iaUp " (N =0
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where
UO = WOI (Y) .

This equation may be solved using the method described previously.

The inviscid instability of O(e ;) has a non—trivial slip velocity at the wall and so a viscous
Stokes layer is needed to satisfy viscous no—slip c0 nditions. To be more general in our outlook
we assumed that the Rayleigh instability is occurring in a region of dimension (An 00 = An )
where A, is given above (see Fig. 24). Furthermore, it was assumed that the base velocity and
perturbation (i.e. the main Rayleigh instability) are given by

u~¢;_{Un+ equ'n +
where Uy is the base velocity which is assumed known from a previous Stokes sublayer and
', is the perturbation giving rise to the Rayleigh instability in the current step (i.e. the n—
step). The time scale of this particular Rayleigh instability is given by

A
T T 8rx—r-ll
Note that for the classical boundary layer
gy = 1

and the base flow in the first step of the cascade is a classical boundary layer velocity profile.
For other values of n the base flow is a Stokes layer solution (see Fig. 25). Now consider the
behavior of the Rayleigh instab lity as the scaled y—coordinate approaches the wall. For suffi-
ciently large values of €q the expansion will break down in an inviscid region of dimension (see
Fig. 24)

€
9) ~ O Baz280)
n—-1
We assume, for now, that €a is large enough that this region remains inviscid. What we find

is that the region is a trivial continuation of the Rayleigh solution that lies in Region II, butacts
to switch the role of the base flow and the perturbation. Therefore the slip velocity at the wall

is O(ep) and a Stokes layer is created with dimensions

A 1/2
n
(xy) ~ O|bw (Resn_ 1>

A new secondary Rayleigh instability can occur within a region of the same streamwise length
as the height of the Stokes layer, i.€.

A & A
e | S _=n
(x,9) 0 (Reen_l) ? (Reen_1>

16 *

1/2

and so




providing that

__E_n_:_.l— < g < €
Re A, " n-1

The lower bound on £y, is the critical perturbation scale for: the inviscid region collapsing into
the Stokes layer (in which case the Stokes layer is driven by contributions from both the base
flow and Rayleigh instability), and that the secondary region, Region V, be inviscid. If e, is at
the lower bound then the secondary instability region is viscous and governed by full Navier—
Stokes equations. The upper bound is the requirement that the flow in the primary Rayleigh
instability be linear and governed by the classical Rayleigh equation. Atany step of the cascade
it may be easily shown that the secondary Rayleigh instability problem (i.e. Region V, Fig. 24)
is given by the classical Rayleigh equation -

ia(Ug(Y) — c|yy — o] — ialg" (DY =0
with the standard boundary conditions
P(0) = Y(») =0 .

The base flow is given by the solution to the boundary layer equations in the first step and by
the exact solution to the Stokes layer in all subsequent steps, which is

Upy = u’n(Xo,O,To)(l — e“k+Y)eia(X°"°T°) +c.c
where
K, = Jacl pilArg(c)/2—n/4+ ©0,%))

and the + indicates that the complex root with positive real part is chosen, see Fig. 25.

Various properties of the cascade are outlined below. As noted above, bounds on allowable
perturbations at each step of the cascade may be found. A lower bound may be set at

1/2
£ — En—l
P Re A,

and it is assumed that

€n,, < En <€ -

It may be easily shown that if €, > €q,, then
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A 1/2
_&n s 5 {_2n
sn_16“ > (Reen_l)

which means that the inviscid sublayer (Region I11, Fig. 24) lies above the Stokes layer (Region
1V, Fig. 24). More importantly, if e, > €,_, then it may be shown that

—

tn+1 <ty

which means that the time scales of successive Rayleigh instabilities is decreasing and the in-
stability develops sooner on the shorter length scales which are closer to the wall. Also, if
€q > €n_, then it may be shown that

Ay <Ag

which means that the instability cascade occurs on successively shorter length scales. Finally,
ifeq > €4, thenit may be shown that

8n+1m., > Engu

which means that as the length scale of the secondary instability gets smaller it takes a larger
disturbance amplitude to trigger the next secondary instability. The recursive expression for
the scale of the Rayleigh instability may be iterated to the first Rayleigh instability scale, in
which case

m

A =Re_k§11/2k{ﬁ _1/2“}A1/2n
n+l n—k 1

For the Prandtl boundary layer

and so
—1/4n—§‘ 1/2 n—1
_ < —1/2%
A .1 = Re =t kﬂl Sn_{(

In the limit as n — o, the geometric series converges to

pESE

k=1

and so




-1 7 —1/2
Mgy~ Re™ [[e  asn—«
k=1

The right hand side is bounded by the inequality

A

n+ 0

[= o} o
- Re™? H.a"l/zk > Re ! ﬂ g1/ = Re~ g1
' k=1 MK k=1 0

Since g, = 1 this means that for all n

Ap > Re!

-

This limit is achieved rather quickly for large amplitude disturbances. For example if the dis-
turbance amplitude at each step of the cascade is assumed to be O(1) then the cascade scales
are )

(Al,AZ, As, A4,...) = (Re‘l/z, Re‘3/4, Re'7/8, Re"ls/m,...)

and the scales asymptote quickly to the dissipation scale Re ~1 The other bound is easy to see
from the individual steps of the cascade. If e, = €,_, at each step of the cascade then it may
be easily shown that

ey, = Re~1/¢

crit

for all n. The scales in this case are found to be
A, =Re"2 | Ay =Re~¥* foralln =2

The physical interpretation of this result is simply that the second step of the cascade occurs
in a full Navier—Stokes region and so no more cascading is possible. This does form a reason-
able upper bound for the scales of the cascade, since the perturbation at each level may be tak-
en just slightly larger than the critical amplitude. This means that a cascade can be found
where, at each level, the spatial scale is just slightly smaller than Re —3/4 Therefore, the cas-
cade scales are bounded by

Re 1l <A, < Re~3/4 .

At any step of the cascade the secondary Rayleigh instability problem (i.e. Region \Y Fig. 24)
is given by the classical Rayleigh equation

ot (Ug(Y) = oa Wy — adw] — ioaUy" " (Y = 0
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A}

together with the boundary conditions

p(0) =0 v'(0) =1 y'(»)=0

The baseflow is simply the Stokes layer flow generated by the Rayleigh instability in the pre-
vious step in the cascade, which is -

UO = u,n—-—l(X0707T0)(1 -_ e_k*Y)eian—l(Xc_cn—lTo) -+ c.C
This equation may be written in the form
Ug(Y) = Re®(1 —e™®¥) +cc ».

where 9 is a parameter that positions the current step of the cascade within the Stokes layer

and
Ky = Jon[og g |elAEEe/2=m/4+0m)

and the + indicates that the complex root with positive real part is chosen. The subscriptsn—1
denote values which are known from the Rayleigh solution in the previous cascade step and
the subscript n denotes values in the current step. Note that the eigenvalue ¢ instepnisan
unknown, whereas the wavelength a in step n is a specified parameter. Solving the above prob-
lem directly would consist of solving a very large number of Rayleigh equations coupled
through the Stokes layer profiles. At each step, parametric variations in streamwise location
within the Stokes layer as well as wavelength would have to be accounted for. It is clear that
only 2 or 3 steps could be solved by a direct method. Fortunately, the entire cascade problem
can be reduced to an iterative mapping on a reduced Rayleigh problem. The transformation

(¥,,8) = (¥, %,0)  (en Up) = R(en Uo)
Vv&n-1 [Cq-1]
yields the following reduced problem: the Rayleigh equation and boundary conditions are the
same as above, but the base velocity is replaced by:

GO(Y) = eie(l — e”l-"'?) +c.c ,
where

l~(+ = ei(Arg(cn_l)/2—:c/4+(O,x)) i

The only parameter which survives from the initial Rayleigh instability driving the Stokes flow
is the argument of the complex wavespeed in the previous step of the cascade. The only other
two independent parameters in the problem are a, and 9, but they do not affect the next step
of the cascade. Therefore, the only thing we need to check is whether or not the flow is unstable
and then compute arg(c,) in the unstable regions. An interesting consequence of this trans-
formation is that the entire secondary instability cascade is completely determined by the argu-
ment of the eigenvalue of the primary instability in the original unsteady boundary layer (i.e.
by arg(c) computed from the instability of the original boundary layer). A schematic diagram

\
\
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of the reduced problem is shown in Fig. 26.

The above equations are Newton linearized and finite differenced, which gives

U, — c U, — c}g , B U — c
__ZX—Y_'—Z——wj_l— ZW—+G(UO—CF)+UO 'Lp]‘{"' ij*—l
g — e = | c& a8 — e
+ [azlpj ww]cj [cj (a Wt ww)]
and | .

with the boundary condition y=0 at the wall,
Y, =0 °

and the second order accurate boundary condition ¢y = 0 at the wall,

Yy =AY

The free—stream boundary condition is imposed by considering the solution to Rayleigh’s
equation in the region where Uy = 0, this gives the solutiony « e ~%Y which means thaty
satisfies the equation ¥y + op = 0. This last equation is finite differenced in a second order
accurate manner to give the boundary condition:

2. 1+ aAY . 2],
[AYZ]WN"I - [27%_ i Q7JWN -

This system of equations is inverted using a complex valued block tri—diagonal algorithm. A
good initial guessis needed for this algorithm to converge, due to the fact that there are nonuni-
que solutions to the Rayleigh equation. In general, unstable modes coexist with stable modes
and the algorithm has a tendency to lock onto the stable modes. We generate the initial guess
either from a previously converged solution or by solving the initial value problem for the Ray-
leigh equation, written in streamfunction vorticity form

Yyy — a7y =
and

Ep + iaWy (V)E — iaWy""(Yp = 0

with boundary conditions that mimic a fixed wall roughness:

\
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Y0, T) =1

These equations are marched long enough in time so that the instability modeshape is fully
developed. The solution of this initial value problem is only needed for the very first computa-
tion. Subsequent eigenvalue computations use initial guesses from the previously computed
eigensolution.

e

Since the only parameter from the n—1 step driving the n’th step of the cascade is arg(c) from
the n—1 step, self similar solutions occur at fixed points where the arg(c) computed at the n
step isequal to the arg(c) input as a parameter from the n—1step (see Fig. 26). The full reduced
problem was solved near a region where self—similar solutions (i.e. fixed points) were ob-
served possible (see Figs. 27 and 28). Self similar solutions of this scale cascade were computed
and are shown in Figs. 29 and 30. Fig. 27 shows fixed wavelength slices through the dnstable
region. Fig. 29 shows one of those slices with contours of the n—step arg(c) and the fixed point
surface indicated. Fig. 30 shows the function arg(c) along the cuts 1—5 indicated in Fig. 29. The
passage from one step of the cascade to the next occurs by specifying arg(c) in the n—1 step
and using it to generate arg(c) in the n step. The new arg(c) then becomes the input arg(c) at
n—1forthe nextstep of the cascade and so an iterative map is generated. The cascade solutions
shown in Fig. 30 assume that the instabilities in the various steps of the cascade have the same
scaled wavelength (i.e. relative to the Reynolds number scaling). Furthermore, it was found
that the instabilities with maximum growth rate at each step of the cascade could also form
self—similar cascades to the dissipation scale (see Fig. 28). The essential idea is that any solu-
tion with fixed arg(c) and fixed relative position in the Stokes layer, 6, will have a single maxi-
mum growth rate at a finite value of wavenumber, c.. This means that the waves with maximum
growth rate form a surface whichisroughly parallel to the (arg(c),0) plane. If that surface inter-
sects the the fixed point surface in such a way that contours of arg(c) cut across the fixed point
line (i.e. the intersection of the two surfaces) then solutions in the maximum growth rate sur-
face look similar to Fig. 29 and cascading solutions can be found. Fig. 28 shows that the maxi-
mum growth rate surface, mg, does indeed intersect the fixed point surface, fp. Similar scale
cascades are likely for other boundary layer instabilities. The one which dominates is likely to
depend on the particular solution considered. The present Rayleigh instability cascade will
likely occur for loaded airfoils approaching leading edge separation and lower frequency prob-
lems near separation.

It is clear that the present instability, if continued to the viscous dissipation scale, will yield a
fractal structure in the streamwise direction at infinite Reynolds number.

3.0 Local Numerical Computations:

The local nonlinear problems for Rayleigh instabilities in the boundary layer, or any step of
the cascade, are governed by Euler equations written in local Cartesian coordinates:
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UT+UUX+VUY= —PX

and —

VT+UVX+VVY= “'PY

In streamfunction vorticity form these are L

Q=IPXX+WYY’ -

_EDT?:-' Qt'{“ng'*'VQY:O
A model problem to simulate the approach of the above structure to the viscous dissipation
scale is the Navier—Stokes problem:

Q‘=WX_X+1PYY ,

A wide variety of numerical methods were employed to compute the local nonlinear develop-
ment of one step of the cascade. For the sake of conciseness, only the schemes which are cur-
rently the most viable will be discussed below. Convective Taylor series expanded, explicit cen-
tral difference and implicit central difference schemes were used to compute both Euler and
Navier —Stokes equations in an attempt to find a two dimensional soliton emerging from the
initial linear instability. Local Navier—Stokes solutions at lower Reynolds numbers did show
this soliton like behavior (see Figs. 31 through 33)

Three stages were observed in this growth to the soliton candidate. The first was the classical
cats—eye pattern with linear growth about the critical layer, the second was a stage with a main
nonlinear eddy and multiple smaller eddies and the third was a stage with a single large scale
eddy of finite aspect ratio. The creation of asymptotically small scale eddies is believed to be
unlikely in the nonlinear inviscid equations which make up each step of the cascade, due to the
fact that all functions of vortcity must be conserved in an inviscid flow which tends to mitigate
against the development of asymptotically smaller scale structure (note that many, but not all,
cases have been ruled out).

First, we note that the full nonlinear coupling in the Euler equations can be preserved for short
wavelength regions, with the scalings

\
\
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X,Y,T) = 0(X,Y, T) ,

where 8 is the specified small spatial extent of the vortex. The dependent variables must satisfy

¥, Q) = d¥,8°1Q)

——

These last conditions are required to preserve O(1) velocities, which seems reasonable since
the wall slip velocity and all other velocities within most of the small scale Euler region are
likely to be finite. An important conclusion is that the vorticity of the small scale vortex must
become locally large in order to preserve a fully rotational flow. Now we turn to the conserva-
tion of vorticity. The vorticity equation may easily be manipulated into the following form

PEED (@), + Wy F@)x — PxF@)y =0 .

In vector notation, for a fixed control volume, this equation is equivalent to:

%[[JF(Q)dV+[{F(Q)V-ﬁdS=O :

where V is a fixed volume, S is the bounding surface of that volume, n is the unit outward nor-
mal vector to the surface S and V is the velocity (¥'y,— Wy). If we assume that the volume is
a periodic box with one surface on the plate, another parallel to the wall, but at large Y, and
the period taken to be the prescribed period of the flow, then it may be easily verified that the
spatial mean of any function of the vorticity is conserved. Written in the two—dimensional
coordinate system this means that
L/2
(F(Q)) = I
-L/2
We note that periodicity is not likely to play an important role in the final conclusions drawn
from the above integral equation. For example, in a ”localized” disturbance we could take the
edges of the box to be far from the disturbance and arrive at the same result. Such a formulation
would allow for complex spatial evolution, but would be difficult to verify computationally.
The above result has a simple physical interpretation. Each differentially small patch of fluid
has a well defined mean—vorticity attached to it (i.e. approximately equal to the area of the
fluid patch multiplied by the magnitude of the local vorticity). In an inviscid flow, the vorticity
is convected with the patch of fluid. This means that all vorticity within the flow will be pre-
served, along with all functions that can be formed from the vorticity (note that incompressibil-
ity and two—dimensionality is an important part of this). Particular cases that were examined
in the numerical solutions were: conservation of mean vorticity, mean square vorticity, mean
quartic vorticity, which gives )

f F(Q)dYdX = const .
0

2
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L2 «
(Qm) = j J QmdYdX = const
~L/20

for m=1,2,and 4, as well as mean exponential vorticity, which gives -
L/2 o

<eQ’—_ 1) = J J (eQ — l)deX = const
~L/20

Conservation of even powers of vorticity greater than 2, as well as the exponential, vorticity,
do not allow for the creation of small scale structures with finite velocity that are governed by
the full Euler equations. This is because of the fact that the total integral over such.regions
would yield values which are much greater than those present in the original flow (which is set
be the Stokes sublayer). It is also believed that these conservation laws will play a key role in
constructing global nonlinear descriptions of the dynamic stall boundary layer with embedded
eddies. -

In the numerical computations it is important to maintain both stable, oscillation free, com-
putations as well as conservation of different functions of vorticity which will guarantee that
the smaller scale structure will not be created.

When numerical methods used for the Navier—Stokes equations were applied to the Euler
equations they could not get past the intermediate nonlinear multiple ~eddy stage (note that
the Euler computations are at very high Reynolds numbers and are the computations most
relevant to the scale cascade and asymptotic theory). The most successful straightforward
computations were a central difference method in conservation form. It was found that the
central difference schemes could be progressed further and further ahead in time with re-
peated spatial grid refinement. However, progress was slow and alot of spatial grid refinement
was needed to make even modest gains in time. The finest grids run in our computations were
500 by 500 spatial grids with 20,000 time steps. Central difference schemes were found to con-
serve vorticity functions well (see Fig. 38), but suffered from spurious oscillations within the
middle of the multiple eddy stage. Low order upwind schemes could eliminate the numerical
oscillations and pass through the multiple eddy stage to the later stage, but failed the vorticity —
function conservation test quite badly at very early times.

One scheme used for the Euler and Navier— Stokes solutions consisted of convecting the vort-
icity and then Taylor series expanding the convected vorticity back to a fixed grid. This scheme
was used for both the inviscid and viscous solutions. It was found that a conservative central
difference scheme yielded substantially the same results as the following scheme. Both the
convective and central difference scheme are currently being abandoned in favor of the CUD
(compact upwind difference) scheme to be discussed later. The three schemes are outlined

here for the Euler equations.

For the Euler equations, a velocity field is calculated at the n—1 time step by central differenc-

\
5
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ing the streamfunction. The points on the Eulerian grid are convected with the flow via an ex-
plicit time difference:

AX = WLTIAT + O(AT?)

AY = — WETIAT + O(AT?) .

The above velocities are evaluated with second order accurate central differences. The above
equations can be extended to second order accuracte expressions, which are:

a% = Wy AT + AT Wi+ Wi hweg! - wEolwgil) + O(AT) ,

and

Ay = — Wi AT — AT (wigt o+ Wi gl — Wt lenet) + + O(AT?)

The vorticity of a convected gridpoint is taken to be the same as the original vorticity at the
corresponding Eulerian gridpoint

Qr = Qn-!
% 1)

The vorticity on the Lagrangian grid is then used to generate new values of vorticity on the Eul-
erian grid via Taylor series expansion, which for the first order scheme is:

2 A A2 A2
Q,?’} = sz + Axi’jQXi.j + Ayld %Lj + O(Ax ’Ay ) .

These equations are combined into the following Poisson—like equation for the vorticity

n —_ n n — n

n—-1 _ n A i+1,j i—-1,j A Lj+1 1L,j—1 o
QI,J = Ql,] + Axi'j 2A_X -+ Ayl.] 2AY ' QT 5

where 1 is a pseudo—time used to accelerate and/or stabilize the solution within each physical
time step. For the second order scheme the above becomes

93 — n n —-— n
n—-1 _ n A i+1,j i-1,] A L,j+1 L,j=-1
A2 On — n n 22 On — 2700 —— OQn
ARG T2 L Ay T2 Q-1 - AL AD OO
5 N t— AY? XijBYij2exy

These equations are solved with a Peaceman—Rachford ADI method, and converged in the
pseudo—time. The spatial cross—derivative in the second order method is iteratively updated
within the ADI method. After the vorticity has been obtained, the central difference form of
the streamfunction equation is solved using an ADI method with specified vorticity
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Wwn o —2ya 4 \pr - \pn o oyn L yn o
i—-1.1 1] 1+1,j + i—1,] 1,} i+1,) _ Qr. +
AX? AY? I

The entire numerical method is formally second order accurate in time space. Higher order
accurate temporal schemes were tested, but did not yield significant improvements over the
above scheme on fine temporalgrids (as is to be expected). It should be noted that this method
is equivalent to a central difference strongly implicit method if the velocity evaluations are tak-
en to be implicit and the streamfunction and vorticity equations are coupled.

It should be noted that the above scheme was used to generate early solutions and has been
abandoned in favor of central difference and CUD schemes.

A number of central difference schemes were tested. Of those tested, the most successful ex-
plicit central difference scheme was found to be

n -— n n n — n n
Wi-1 Zwij+ i+1j Vi-1 2wij+wij+1

A2 + Ay2 = Qg + YP:
Qg-*-l B Qg—l n a n n
2AL - (wYQ. )x - (wa )Y =0
or
Qi}“ - Q?jwl N (wr{/Qn>i+1j - (w?Qn)i—u _ ( §'Qn>ij+l - (wr\l/gn)ij—l -0
2At ' 20X 2AY

Both of the above schemes, as well as the current CUD scheme, were solved with periodicity
conditions of the form

Wi = YNy
and

2 = 9,
These periodicity conditions did not significantly slow the numerical method. The actual peri-
odicity conditions used in the computations were applied by extending the grid one point on

either side and iteratively updating the extended points from the solution on the interior of the
grid. The actual conditions used were

n — \pn n — yn
l*J‘Il,j = lpN—L,j N+1, \ps.j
and
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Q1= QR -y N = 235

where 1and N+1 are the added points and N—1 and 3 are on the grid interior. These periodici-
ty conditions were applied to all local schemes, including the CUD—3 scheme discussed below.
Some use was also made of fixed extrapolated periodicity conditions of the form (also used as
initial guesses on the above)

_ -1 -2 2
ho= W - Wt O(At)
n _ n-1_ on-2 2 %
= 2087 1=+ O(At )

0= 2ppst - 11;;*,;2 + o(A@)

and -

n = 29;{;1 - Qr;‘j-? + o(mz)

However, it was found that this did not significantly enhance the convergence of the method.
The limiting factor in overall convergence was, and still is, the solution of the Poisson equation
for streamfunction.

Discussion was initiated with the United Technologies Corporation to interact with Professor
Andrei Tolstykh of the Russian academy of sciences to learn the CUD methods (Compact Up-
wind Difference). CUD schemes are high order upwind (i.e. one—sided) differencing schemes
that maintain 3—point computational molecules. The third order CUD -3 scheme was suc-
cessfully applied to the Euler equations and appears capable of passing through to the soliton
stage while maintaining reasonably good conservation of vorticity and a minimal amount of
spurious oscillations. The implementation of this scheme is not sufficiently far along for results
to be presented. However, since it was implemented during the grant period and since it will
likely form the core of future work the basics of the scheme will be discussed below. The meth-
od presented below is first order accurate in time, and first order accurate in the viscous terms
(to be discussed later). Second order temporal and viscous schemes are straightforward modi-
fications of this scheme, but do not retain the natural simplicity given below.

The streamfunction equation is solved using an implicit central difference ADI with pseudo
time stepping within the iteration

w?—lj_zwg’*'w?ﬂj %-1'2‘Pi}+‘l’§}+1 - on
Ax? - Ay? =%~

The vorticity transport equation was solved with a spatially 3rd order accurate CUD-3
scheme
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Q, + ), + (vQ), = 0

This equation is particularly appropriate for testing the CUD schemes, as the schemes are in-
tended to use upwind differencing at high order to model convective terms. To construct the
CUD-3 differencing, consider the upwind approximation of a derivative

— Ju
f 0x

Normally the equation is evaluated at i and a one sided difference of the derivative yields first
order accuracy. Third order accuracy is achieved by distributing both the right hand side and
the left hand side of the above equation over a tri—diagonal grid using the difference operators

Ag.f = + O(AXD) .

=71 AX

where the standard upwind operators (taken in x and y directions) are  ~

Aes = Ofy; = OF 5 Axe = 0~ 0i-yj

Ay+ '_‘03-1_()3 ’ Ay_ =()E—OF—1

and the CUD—3 operators are

1 8 5
Axy = — “ﬁ()in_u + —1‘2—()% + '1—2‘()?+1j

5 . 8 1
Aco = 50015 + 504 ~ 75 0i+1;

1 ~n 8 An 5 An
Ay, = —17305-1 + 1305 T 13045+

5 8 1
Ay_ = ’1—03_1 + ﬁ()i} - ‘130;}'4»1 .

These operators may be written in terms of a switching parameter s. For example, in the x—
direction

Ax(s) = S5O0y = 0§ + 45200




Ax) = 2500 + 305 + 25200

where the switching parameter gives
-1, backward difference, — operator

s = "0, central difference

+1, forward difference, + operator

The same form holds for the y—direction. The forward and backward differences are formally
3rd order accurate, while the central difference is formally 4th order accurate. To enhance sta-
bility it is sometimes desirable to smoothly switch the upwind operators between a forward and
backward difference. For example, this avoids the situation of a single grid—point oscillating
from forward to backward difference. This was accomplished by using the smooth switching
parameter, given in the x—direction by

Sui
1355Au + o] | ’

§ = — tanh[

where S is some arbitrary large number (S=20was used in our computations) and Au isroughly
the velocity half range about u=0 where the smooth switch is applied (that is, when u=Au the
switch is at 0.95). As mentioned before, if s= +1,—1 the CUD-3 scheme is 3rd order accurate
and upwinded. If s=0 the CUD—3scheme is 4th order accurate and central differenced. Other
values of s give first order accuracy, but these are confined to thin regions where the velocity
is low. -

Consider the application of the CUD -3 scheme to the vorticity transport equation in two di-
mensions :

Q, + (uQ), + (VQ)y =0

The first order temporal CUD—3 scheme was taken in our computations to be

3Qn — 4Qn-1 4+ Qn-2
Y i L ny Ll -l 0 _
AL + Ax Ax (S)Ax(S)(UQ)U Ay Ay (S)Ay(s)(vQ)U 0

In approximately factored form, this scheme becomes

2 - n 2A - _ 4 _ 1 )
[+ FReane oo [1 *Say 0 1Ay<s>vi}]<9>i} =397 —39

This scheme is formally first order accurate in time, but may easily be extended to second order
accuracy by adding a grid function to the right hand side of the equation. The factored scheme
is solved in the standard fashion by splitting it into two steps

\
\
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2At — 4 _ 1 ~n—2
[1 + IAx () 1AX(S)U{}] Qj = 39 1_2qn-2

and

[1 + %Ay( )"lAy(s)vlj](Q)U =Q

Each step of the CUD -3 algorithm is solved by multiplying through by the appropriate opera-
tor, giving:

AOQ} + 2L AR} = AfEer! ~1on-2) _
and

Ay()(Q)f + 2A‘ Ay(s)(vQ)1J Ay(Q}

Now consider the actual implementation of each step:

1) x—direction:

AQ] + 28LA (9uQD = AoiFQr! — Lon-?
J 3AX J 377y 37y

which implies that

2 —3s . 2+ 3s 2At s — 1
12 T 3Qn vyt 3Ax[ wQ)i_ 1j s(uQ)lJ

+ - _
rsglean,] = aofiey -3or

A linearization was used in which the u and v velocities were treated as known guessed values
(in our problem these equations were iterated with an ADI solution of the Poisson equation
for streamfunction). The above gives the tri—diagonal system:

2 — 3s At(S—l) n n _2__28At n{An
[ 7 T TaAx Yi-u|li-n T3 i)

2 +3s , At(s+1) _ 4 L 1oz
+[ 12 T 3Ax Ui 1 Qe g Ax(s)iz Q“ Qij

which must be inverted for Q at all i j gridpoints. Note that the right hand side is easily com-
puted by applying the A(s) operator to the known vorticity at the old time levels.
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IT) y—direction:

AfIQ] + ZRE AR = A9Q]

The above equations imply that

2 — 3s n
7 -1

2 2 + 3s 2At|s — 1 n
+ §'Qg + TQE'H -+ 3—A—y'[——2—(VQ)ij_1 - S(VQ)E

+1
+ 5—2-(v§z)g+1] = Ay(5)Q]

Again, assuming that the v velocities are treated as known guessed values, the above g‘ives the
tri—diagonal system:

2 — 35, Ats— 1) 2 2sAt
[ 2 34y "3—1]93-1 + [5"'3—5)7"3]@3’

2+3s , Ats+ 1) _
+[ 5+ SAy VB (@ = Ay(5)Q}

which must be inverted for Q at all i,j gridpoints. Note that the right hand side is again easily
computed by applying the A(s) operator to the known values of Q computed during the x—in-
version. Also note that the switching operatorsis different for the xandy inversions. Care must
be taken to consistently apply the appropriate switch and boundary conditions to the above
equations.

For example the boundary conditions for the Euler equations are given by flow tangency, or

v=—yy =0

The vorticity equation evaluated at y=0 with v=0 is:

Qt+uQx=0.

This equation may be written in a conservation form which mimics the interior solution:

Q, + WQ), — Qug =0

The CUD -3 scheme for this equation is

3Qp — 4Qp7t + Q72 . n . onl 1 0
o 2L A AW} + QijE[Ax(s) Ax(s)uij] =0

This equation may be written in a form similar to the interior equations by muitiplying the

\
\
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equation by 2Dt/3 and carrying terms to be treated as known to the right hand side

Qn + 2L () TIA(HE] = FR571 - 77 — Qi ZAL AL (o) ~la(su]

Now, a grid function g is defined such that

—

g = Axs) T Ax()uf .

The grid function g is found by inverting the tri—diagonal equation

Ax(s)g = Ax(s)uj

or, in expanded form,

— 3s L2 2+ 3s _ -
12 g? 1j 3g3 12 g?"'l_j A (S)u{’-

where
A® = 55200y - s0f + L5200
The vorticity transport equation at the wall becomes

o L 28t 4 o 4on-1 _ Lon-2 281
2 + Jax A ARy = 37— 39 _933Ax[°u]

or

AR + 280,000 = Axofiep - Jag? - o]

In expanded form this last equation is

2 — 3s 2Ats — 1 q n 2-___2__A_£ n
[12 T3Ax 2 11J]Ql 1 [3 3Ax5‘“]Q

2 +3s  2At1 +5s a n
+ [ 12 + 3Ax 2 l+1J]Ql+1J

4 -1_1 n-—2_2At n.n
X(S){3 2j 3% 3Ax Qiigii]

Note that the CUD-3 operator on the right hand side of the equation is simply

1+1_]
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The switching parameter may be the simple switch from backward to forward difference or the
more complex smooth switch:

Suy;
s = — tanh .
135S Au + |uy

4.0 Global Numerical Navier:_Stokes Computations:

The Navier —Stokes equations in streamfunction vorticity form were solved for flow past a pa-
rabola at angle of attack ' .
A series of full Navier — Stokes codes have been written for flow past a parabolic leading edge.
The main code used was a pseudo— ADI with central differencing. This algorithm was based
on a globally iterated parabolized Navier—Stokes code coupled with an alternating ADI step
for the streamfunction and vorticity diffusion (see Davis (1972)). In one version of the code
the dependent variables in the Navier—Stokes equations were split into an inviscid and a
correction such that the sum of the two yielded the correct viscous variables. The nonlinear
“perturbation” equations for the corrections were solved by the above—mentioned method.
Details of the various codes and solutions are given below.

The Navier—Stokes equations written in Cartesian coordinates and non—dimensionalized
with the leading edge radius of curvature of the parabola are given by

—-Q =Wy + ¥y
and
Q, + W,Qy — WiQy = Re 7} Qs + Qyy)

These equations were transformed to parabolic coordinates using

which gives the equations
— (2 +n2)Q = Wy + Uy
and
(82 + n2)Q + Wy Qg — WeQy = Re Qg + Q)
The boundary conditions are no—slip at the parabola surface
YE 1) = Py Ly =0
and an asymptote to the free—stream

IIJ(E, nmax’ t) = lp'mv(gy n’ t)
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and
QE Mmax ) = Q€MD
The inviscid flow is given by

¥ G, ) = € + K)(n — 1)

——

and

va@,n,t) =0 3

where K(t) is the angle of attack parameter discussed in the boundary layer solution! The fol-
lowing grid stretchings were added to cluster points in the boundary layer and in the stream-
wise directions near regions of interest .

E=80 =7
Using these transformations, the Navier—Stokes equations become
24 2\0 = E[E = (=
- (2 + 7)o = EEW)_+ W, (m, %),
and
(€2 + nY)o, + Etﬁn[WﬁQg - W-E-Qﬁ] - Re“1<§g(§EQE)E + ﬁn(ﬁnQﬁ)ﬁ> .

The stretching in the normal direction to the parabola is used to resolve the boundary layer
and sublayers and is given by

m—1 _ sinh(a.m) 0=7m=1
Mmax — 1 sinh(ay) 1 =1 = NMmax
To place points near the leading edge, a simple clustering transformation was used
g sinh(aE) —15E=1
Emax B Sinh(aS) . - %max = E = Emax

The ”a” parameters give the degree of stretching in each case. To cluster points in a specific
region of interest in the streamwise direction, the grid was split into three regions:

Regionl: —Enx = § = § -1sSE=E
Region 2: E,SE=E, E,SE=SE
Region 3: E, S € = Enm E,SE=1

The stretching transformation in Region 1 is:
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Ut

)

sinh(al(l -
€+ Emax _

El + gmax B sinh(al

N T

In Region 2 a uniform grid was used:

——

E=§ + Ei__%l(%z - &)
In Region 3: .
5~ 5 = sinh{a E—Eg
Emax — E_ N1 - gf, :

The a’s are chosen so that the streamwise metric is smooth throughout the domain. A typical
grid is shown in Fig. 40.

The finite difference scheme is a central difference pseudo—ADI based on global iteration of
a parabolized vorticity equation. The first step of the ADI is

W, — (EZ + nZ)QH+1/2 — Eé(ggqjg*l/?.)g + -ﬁn<ﬁn1p%+1/2)}7 ,

where the first term is a fictitious temporal term added to stabilize the method and is iterated
to zero at each real time level. The vorticity transport equation is

Qr+l/2 _ Qn
2 02\ Y y
(E i ) At/2

+ 'g.—- an+1/2Qn+l/2 _ lpn+1/2gn+l/2
A g o

All solid underlined terms (at the n+1/2 level) were treated implicitly. All dashed underlined
terms were assumed known from the n time level. All terms were spatially central differenced.
The n+1/2 time level was iterated to convergence using a global iteration procedure in the
streamwise direction. That is, the equations were central differenced, Newton—linearized and
inverted in the normal direction using a block tri—diagonal algorithm. Repeated sweeps in the
streamwise direction were used to converge the n+1/2 time level. The direction of the sweeps
were alternated with each pass to enhance information propagation over the upper and lower
surfaces of the parabola.

The second step of the ADI method consists of a streamwise inversion of the vorticity equation
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Qn+l — Qn+1/2
2 + 2 Y 1)
(% " ) At/2

T o= n+1/2 +1/2 +1/2 +1/2
+§En[wﬁ_ /Qg_ /—tpg /Q% /]

Again, solid underlined terms at the n+1 level are unknown and dashed terms at the n+1/2
level are known. This means that the above equation could be inverted as it stands with a single
equation tri—diagonal algorithm applied to each normal grid line. After this is accomplished,
the streamfunction is found from

-

Again, solid underlined terms are unknown and the fictitious temporal term is iterated to zero
at the n+1 time level. The above scheme is formally second order accurate in space and time.

The boundary conditions at downstream infinity on the upper and lower surfaces of the parab-
ola were assumed to be asymptotes to the following Blasius solution
G)

Y = EF Q= -t
gF(m) £

These equations were used to develop expressions for the various streamwise derivatives ap-
pearing in the above equations at the first and last streamwise stations, which are

) v _ _Q
and
W =0 Qsezé—%-

The above Navier—Stokes code has been verified for the symmetric steady case against older
well—documented steady symmetric solutions (see Fig. 41)

We have used this code to compute a number cases:

a.) This Navier —Stokes code was used to compute an impulsively started parabola at angle of
attack. An initial inviscid flow is used to compute a viscous flow by impulsively applying the
no—slip condition at the surface of the parabola. This reproduces results of Reisenthel (1994)
(see Figs. 42 and 43). Secondary separation was observed (and will be described below),
though we do not believe that this is tied to the instability cascading discussed previously in this
report. The impulsive start case is likely to be related to the laminar boundary layer singulari-

\

37




ties. It should be noted that we could not obtain grid independence in this particular problem.
We believe that this is due to a failure to represent the unsteady Rayleigh layer at the impulsive
start—up (i.e. the grid is taken to be fixed). The reason this was done was to keep these particu-
lar computations as close as possible to others currently in the literature, which also use a poor
initial start—up.

b.) Using this Navier—Stokes code, we have shown that a similar structure occurs in the case
of a rapid unsteady pitch—up (see Figs. 44 through 48). The same multiple —eddy structure
occurs in the boundary layer (see Figs. 44 and 45). Here, we were able to come close to grid
independence (see Figs. 46, 47 and 48). Furthermore, multiple embedded eddies were ob-
served (see Fig. 48) 1
The Navier —Stokes code used here is slightly modified from the one discussed above. It was
found that the free —stream boundary condition could be more effectively imposed on the inte-
rior flow if the solution was split into the inviscid part plus a nonlinear perturbation which gives
the true viscous solution. That is

Y=y+W¥,
and

Q=0+Q  =w
since

Q. =0

The original Navier—Stokes equations were
— (82 +1%)Q = Wy + Wiy
and .
(82 + n2)Q + W@ — W@y = Re™}{Qg + Q|

Substituting the above equations for the transformations gives the ”perturbation” streamfunc-
tion equation

— (& + 7o = v + Vm

due to the fact that the inviscid solution satisfies the Laplace equation, and the perturbation
vorticity transport equation

(EZ + nz)w( + (\pinvn + ‘Pn)‘”g — (qjinvs + wg)wn = Re_l(wgs + U)-,m)

These last two equations for the perturbations were solved in the same manner as the full sys-
tem. The boundary conditions on these equations become :
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yE 1L,y =0
and

‘Pn(g, 170 = - Winvn(E7 1, t)

at the wall, and the asymptote o the free—stream

w@anmax,t) = w@’nmax,t) =0

c.) We have also shown that impulsively changing the angle of attach in small increments
(which will lead to a sequence of quasi—steady solutions in stable cases) will give rapid multi-
ple eddy breakup in a flow which is immediately post separation. We think that this may be
connected either to marginal separations.

d.) Applying the quasi—steady impulsive change in angle of attack in preé=—separation cases
produces unstable long—lived unsteady flow with multiple eddies (see Fig. 49). The times in
these figures are 75 time units which is somewhat longer than the 30 time units in the rapid
pitch—up case. A blow—up of the local wall shear near the eddies is shown in Fig. 50 and vortic-
ity contours are shown in Fig. 51. It should be noted that very fine grids were needed to obtain
these solutions. A linearized boundary condition was added to the parabola surface to enable
us to input surface distortions of small amplitude but arbitrary functional form. The eddy struc-
ture is strongly influenced by small changes in surface geometry perturbations (see Fig. 52).
Vorticity and streamline patterns in the vicinity of the eddies are shown in Figs. 53 and 54. Note
the resemblance of the eddy in Fig. 54 to the earlier computed eddies in the local solution (see
Figs. 31 and 34). We believe that these last computations (i.e. impulsive change in angle of at-
tack below separation) are candidates for Rayleigh instabilities. It is clear that we can rule out
all separation eddy creation mechanisms, such as marginal separations and boundary layer sin-
gularities, due to the fact that the flow remains attached while the initial instability developes.
Itis not clear at this point what effect of the impulsive change in angle of attack has on the com-
putations. This should be changed to a smooth variation in future computations.

Lastly, a CUD -3 Navier—Stokes algorithm based on the pseudo—ADI parabolized vortcity
iteration was written and verified for the steady symmetric solution (Fig. 55) and early stages

of the unsteady pitch—up (Fig. 56).

The unsteady CUD—-3 Navier—Stokes algorithm uses the stretched equations in parabolic
coordinates written in conservation form

v, E+n3Q & T
ToTT T ﬁ‘*’s; £ o
> T

and
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where
I = E,%. n -

The CUD -3 algorithm is applied to the above equations in a form similar to the pseudo—ADI
algorithm discussed above. Nominally, the CUD-3 algorithm is given by:

1

g2+ 2Q) AgT'A Ay Mg .
-g—t(g—.:ﬂ—)——> + '—gA—E—E(WﬁQ) - nAﬁ - (lp'.é )
= Re1(agad03) + Ar~'ad(8]))

where the A’s and A’s are the normal CUD -3 operators and upwind operators respectively
and the A’s on the right hand side are central difference operators, given by

_ 1
Al = —2[}‘i+1/2j<9i+1j = Q) = My @y - Qi—lj)}
AE
and
_ 1 -1 _ 11 _
ATTQij'_Aﬁz[)‘in/z(Qin Qij) }“ij_l/z(gij Qij—l)] ’
where

u

>)
I
__?'SII Ul

The algorithm is implemented in a manner similar to the pseudo—ADI algorithm discussed
earlier. Since this work has only progressed through the very preliminary stages, further details
will be omitted here. The above scheme is second order accurate in time, third order accurate
in space in the convective terms and first order accurate in space in the viscous terms (which
appears to be a standard accepted limitation of past CUD work). We believe that the CUD
schemes will be a major empbhasis of future work and attention will be paid to increasing the
accuracy of the viscous terms. It is clear that the accuracy of both the unsteady terms in the fully
implicit method as well as the viscous terms may be made second order in space and time using
methods that should work well within a Newton iteration. Despite the nominally low accuracy,
full viscous solutions we computed showed good agreement with the central difference scheme
for steady and early unsteady flows.
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Fig. 1. The high Reynolds number airfoil leading edge
and boundary layer structure.
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Fig 2. Temporal variation of K(t) for smooth constant rate
pitch—up. All solutions are started from the steady solution
for a flow past a parabola at zero angle of attack.
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Fig. 3. The high frequency boundary layer instability structure of
Cowley, Hocking & Tutty (1985), showing the viscous critical
layer positioned at the velocity minimum.
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a. Shear stress at K=2.11.
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b. Displacement thickness at K=2.11.
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Fig. 6. Wall shear and displacement thickness for early
boundary layer computations.

45




10.0 g
—— Boundary layer computation
. I — Numerical stability analysis
o= 50r¢ :
25 r
0.0 :
02
10.0 . : T T
—— Boundary layer computation
25 L Lo Numerical stability analysis
& 50+
25 r
0.0 i : — ——
-0.2 0.0 02 _04 0.6 0.8 1.0
Ivi/ivi_,,

Fig. 7. Comparisons of grid—grid oscillation mode
shapes with boundary layer stability mode shapes.
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Fig. 8. Wall shear for new boundary layer computa-
tions without oscillations. |
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Fig. 10. Scaled wall shear stress early in the unsteady
separation computed at various times.
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Fig. 11. Displacement thickness computed at various

times, the time interval between plots is 0.1. Also shown
are comparisons with Peridier et al (1991). Results were
electronically scanned from original reprints of articles.
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Fig. 12. Maximum absolute displacement function and
displacement function slope showing the low amplitude
exponential growth.
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Fig. 14. Deviation of streamwise velocity from parabolic
profile in the critical layer at various times, at a typical

streamwise location.

53




20
15 |

10 |-

20

V(0,Y,T)

Fig. 15. Normal velocities in the critical layer at
various times, at a typical streamwise location.
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Fig. 16. The Rayleigh instability neutral curve for a pa-
rabola in smooth pitch—up. Also shown are the separa-
tion curve and the curve of first inflection point creation

at the wall.
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Fig. 17. The arg(c) for the primary Rayleigh instabili

for a parabola in smooth pitch—up.
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Fig. 19. The initial 2—step cascade: I-boundary
layer; II-linear Euler; III-Stokes layer; IV linear or

nonlinear Navier—Stokes region.
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Fig. 20. Response of the Navier—Stokes region of the two—
step cascade to an inviscid standing wave instability.
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Fig. 21. Typical secondary instability in the Navier—
Stokes region of the two—step cascade generated by
an inviscid traveling—wave instability.
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Fig. 22. Schematic diagram of the linear instability cascade.
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Fig. 23. The initial large amplitude 2—step cascade in a
classical external boundary layer: I—classical boundary
layer; II-linear Euler region; III- passive thin layer Euler;
IV-Stokes layer; V linear or nonlinear Euler region; VI-
Stokes layer.
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Fig. 24. A general step of the cascade: I- the initial Stokes
layer; II-linear Euler; ITI- passive thin layer Euler; IV—
secondary Stokes layer; V linear or nonlinear Euler region.
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unstable region. “
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Fig. 26. Schematic diagram of the reduced stability
problem for a typical cell in the instability cascade.
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Fig. 27. A view of a portion of the right unstable
region containing the fixed point surface.




Fig. 28. The right fixed point surface showing con-
tours of arg(c), as well as the maximum growth

rate surface, showing the intersection of the maxi-
mum growth rate surface with the fixed point sur-

face.
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Fig. 29. A fixed wavelength cut through the
unstable region.
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Fig. 30. Arg(c) along the cuts of Fig. 29 showing an
unstable fixed point and a stable fixed point. The
stable fixed point yields a self—similar cascade to
the viscous dissipation scale.
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Fig. 31. Streamfunction contours for the nonlinear de-
velopment of a viscous Rayleigh instability in a Stokes
layer profile at Re=200.
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Fig. 32. Vorticity contours for the nonlinear develop-
ment of a viscous Rayleigh instability in a Stokes layer
profile at Re=200.
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Fig. 33. Wall shear stress for the nonlinear development
of a Rayleigh instability in a Stokes layer profile at
Re =200, showing soliton like behavior at large time.
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Fig. 34. Streamfunction contours for the nonlinear de-
velopment of a viscous Rayleigh instability in a Stokes
layer at Re=400. The vorticity contours for this solution
show the spurious oscillations normally encountered in
the central difference scheme for the high Re viscous
problems and the inviscid problem.
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Fig. 35. Vorticity contours for the nonlinear develop-
ment of a viscous Rayleigh instability in a Stokes layer at
Re =400, showing spurious oscillations.




a) T=630:
| E =30
j :
] 1
{
f =Y
! =

_— ]

| — =0

—47 X 47

b) T=924: '

!

S SS o
47 X 47
c) T=987:
f = ' 30
L E ‘
! ’r7
! — — v
f/ — =
P gy =
! ) 0
—47 X 47
d) T=1050:

Fig. 36. Typical streamfunction contours for the nonlin-
ear development of an inviscid Rayleigh instability in a
Stokes layer, using central difference scheme.

75




e I
Ko

——> repeated solution
e

B : Y 94 141
X

Fig. 37. Wall slip velocity for the nonlinear development
of an inviscid Rayleigh instability in a Stokes layer profile
using a central difference scheme.
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Fig. 38. Vorticity conservation in a central difference
scheme.
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Fig. 39. Streamwise velocity profiles at a typical stream-
wise station in a viscous Rayleigh instability.
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Fig. 40. Typical mesh used for the Navier—Stokes com-
putations on a parabola at angle of attack. Up to 500
streamwise points have been used in the clustered region
near the leading edge.
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Fig. 41. Comparison of steady state limit of the unsteady
Navier—Stokes solutions with Davis (1972) computa-
tions of flow past parabola at zero angle of attack.
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Fig. 42. Streamlines for Navier —Stokes solution past pa-
rabola with an impulsively applied no—slip condition.

81




Fig. 43. Vorticity contours for Navier—Stokes solution

past parabola with an impulsively applied no—slip condi-
tion.
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Fig. 45. Vorticity contours for Navier—Stokes solution
past parabola undergoing smooth pitch—up.

g4




12

Re'” C,

)
(0)]
t
t

42 |

O (e
-

N

w |-
N

(6]

Fig. 46. Verification of streamwise grid—independence
using wall shear for Navier—Stokes solution past parab-
ola undergoing smooth pitch—up.
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Fig. 47. Verification of normal grid —independence using
wall shear for Navier—Stokes solution past parabola un-
dergoing smooth pitch—up.
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Fig. 48. Primary and secondary separation lines for Navi-
er—Stokes solution past parabola undergoing smooth
pitch—up. Also shown are comparisons at different grid
spacings.
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Fig. 49. Navier—Stokes solutions for an impulsive
change in angle of attack which initially remains at-
tached. Shown are local disturbance developments and
the increase in growth rate as the base flow approaches

separation.
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Fig. 50. Blow—up of the local oscillatory shear stress in
figure 49, showing the multiple separations.
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Fig. 51. Vorticity contours in the boundary layer corre-
sponding to figure 50. Navier—Stokes solutions for an
impulsive change in angle of attack which 1nitially re-
mains attached.
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Fig. 52. Effect of surface perturbations on Navier—
Stokes solutions for impulsive changes in angle of attack
in attached flows. Disturbances increase final distur-

bance amplitude.
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Fig. 53. Vorticity contours in the boundary layer corre-
sponding to figure 52. Navier—Stokes solutions for an
impulsive change in angle of attack which initially re-
mains attached, with surface perturbations.
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Fig. 54. Streamfunction contours in the boundary layer
corresponding to figure 52. Navier—Stokes solutions for
an impulsive change in angle of attack which initially re-
mains attached (with surface perturbations).
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Fig. 55. Comparison of steady state limit of the unsteady
Navier—Stokes CUD=-3 solutions with Davis (1972)
computations of flow past parabola at zero angle of at-

tack.
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Fig. 56. Comparison of Navier—Stokes CUD—3 skin
friction with central difference skin friction at early times
in a parabola undergoing smooth pitch—up.
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